An Adaptive Multilevel Wavelet Solver for Elliptic Equations on an Optimal Spherical Geodesic Grid
نویسندگان
چکیده
An adaptive multilevel wavelet solver for elliptic equations on an optimal spherical geodesic grid is developed. The method is based on second-generation spherical wavelets on almost uniform optimal spherical geodesic grids. It is an extension of the adaptive multilevel wavelet solver [O. V. Vasilyev and N. K.-R. Kevlahan, J. Comput. Phys., 206 (2005), pp. 412–431] to curved manifolds. Wavelet decomposition is used for grid adaption and interpolation. A hierarchical finite difference scheme based on the wavelet multilevel decomposition is used to approximate the Laplace– Beltrami operator. The optimal spherical geodesic grid [Internat. J. Comput. Geom. Appl., 16 (2006), pp. 75–93] is convergent in terms of local mean curvature and has lower truncation error than conventional spherical geodesic grids. The overall computational complexity of the solver is O(N ), where N is the number of grid points after adaptivity. The accuracy and efficiency of the method is demonstrated for the spherical Poisson equation. Although the present paper considers the sphere, the strength of this new method is that it can be extended easily to other curved manifolds by choosing an appropriate coarse approximation and using recursive surface subdivision.
منابع مشابه
Integration of barotropic vorticity equation over spherical geodesic grid using multilevel adaptive wavelet collocation method
In this paper, we present the multilevel adaptive wavelet collocation method for solving non-divergent barotropic vorticity equation over spherical geodesic grid. This method is based on multi-dimensional second generation wavelet over a spherical geodesic grid. The method is more useful in capturing, identifying, and analyzing local structure [1] than any other traditional methods (i.e. finite...
متن کاملAn adaptive multilevel wavelet collocation method for elliptic problems
An adaptive multilevel wavelet collocation method for solving multi-dimensional elliptic problems with localized structures is described. The method is based on multi-dimensional second generation wavelets, and is an extension of the dynamically adaptive second generation wavelet collocation method for evolution problems [Int. J. Comp. Fluid Dyn. 17 (2003) 151]. Wavelet decomposition is used fo...
متن کاملAdaptation of Structured Grid for Supersonic and Transonic Flows
Two distinct redistribution grids - adaptation techniques, spring analogy and elliptic grid generator are applied to two-dimensional steady, inviscid, shocked flows, and the ability of each technique is examined and compared. Euler equations are solved base on Roe's Reimann solver approach to simulate supersonic flow around a sphere, transonic flow about an airfoil and supersonic flow in a symm...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملMultilevel approximation of the gradient operator on an adaptive spherical geodesic grid
This work presents a new adaptive multilevel approximation of the gradient operator on a recursively refined spherical geodesic grid. The multilevel structure provides a simple way to adapt the computation to the local structure of the gradient operator so that high resolution computations are performed only in regions where singularities or sharp transitions occur. This multilevel approximatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 30 شماره
صفحات -
تاریخ انتشار 2008